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TECHNICAL NOTE 3743

AN OPTIMUM SWITCHING CRTTERTION FOR A THIRD-ORDER
CONTACTOR ACCELEBRATION CONTROL SYSTEM

By Anthony L. Passera and Ross G. Willoh, Jr.
SUMMARY

A criterion for the optimum performence of & third-order contactor
acceleration control system having complex roots is presented. This
criterion determines the switching sequence of a contactor utilized to
secure optimm performence and is hence called a switching criterion.
Analytical and analog-computer methods are utilized to determine this
criterion. The resulting optimum transient responses are presented and
compared with those of a linear system. In order to introduce the
methods involved, the switching criterion is first determined for a
second-order system.

INTRODUCTION

Many recent advances in contactor servo theory have been directed
toward the improvement of control-system transient responses. These
improvements have resulted in systems with transient responses to step
inputs of the controlled variaeble that reach steady-state values in a
minimm of time with no transient overshoot. Such transient responses
are called optimm responses.

An early paper by Flligge-Iotz and Klotter (ref. 1) applied antici-
patory switching to contactor servomechanisms. In 1946, Weiss (ref. 2)
presented e detalled phase-plane analysis of a second-order contactor
servomechenism. McDonald (ref. 3) later determined a unique switching
criterion for this second-order system. Xang and Fett (ref. 4) applied
the concept of principal-coordinate phase space to nonlinear servo sys-
tems. This concept simplified the analysis of higher order systems.

In 1953, Bushaw (ref. 5) presented an analysis of the switching curve
in the phese plane which yields transient responses that reach steady
state in a minimum of time. Bogner and Kazde (ref. 6) and Bogner

(ref. T) present e generalized method for obtaining an optimm switching
criterion in higher order systems and apply these methods to a third-
order system with real roots. This criterion requires that an element
with contactor characteristics be actuated by & nonlinear function of
the control-system error and its time derivatives in such a menner that
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the derivetives of the system output go to zero at the instant that the
output variable arrives at a steady-state value.

The purpose of this study is to apply the method presented in ref-
erence T for determining the optimm switching criterion to a third-
order system having complex conjugate roots. Furthermore, this paper
presents a relatively simple amnalog-computer method for obtaining this
criterion and the resulting optimum transient responses.

In order to introduce the methods involved, the switching criterion
is first determined for a second-order system that 1s descriptive of an
ideal missile roll control system. The methods are then applied to a
third-order system that is descriptive of an ideal missile acceleration
control system. The applicaetion of this method to this system is com-
plicated by the presence of complex conjugate roots.

Transient responses of a third-prder limited-linear system are also
included in this peper. These transient responses present a basis of
comparison for the optimum third-order contactor control systems.

SYMBOLS

By ,Bl,Bz,B3 »B)y  constants of integration

b constant coefficient in airframe normsl-acceleration
transfer function, radians/sec

o nondimensionslized constant, c/b2

c constant coefficient in alrframe normal-acceleration
trensfer function, (radians/sec)®

E nondimensionalized system error

By nondimensionalized system error input

g acceleration due to gravity

3 =11

Ky velocity constant of servomotor in normel-acceleration

control system, deg/sec/volt

K> proportionality constant in limited-linesr normal-
acceleration control system, volts/g unit
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Peedback gain constant in limited-linear normal-
acceleration control system, volts/g unit/sec2

velocity constant of airframe transfer function in
roll control system, deg/sec/deg

static gain constant of airframe transfer function
.in normal-acceleration control system, g units/deg

control-system normal-acceleration output signal,
g units

control-system normal -acceleration input signal,
g units

Laplace transform variable
roll~control-system or airfreme time constant, sec
time, sec

coordinate of w ophase space
locus of switching points in w, space
forcing function for mathematicel analysis

actuating signel for servomotor, volts

control-surface deflection, deg
control-system actuating signal, g units or deg

characteristic roots of normal-acceleration control
system

dimensionless time

control-system roll-angle output signal, deg

control-system roll-engle input signel, deg
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A dot over a quantity denotes the derivative with respect to time +.

A primed quantity denotes the derivative with respect to dimensionless
time T.

The subscript a is employed as a switching index (a = 0, 1, 2, and 3).

The subscript n is employed as a coordinate index (n = 1, 2, and 3).
DEFINITIONS

Contactor: A nonlinear element which has an output constent in magni-
tude with the sign of the }nput-and, furthermore, has zero output when
the input is zero.

Optimum trensient response: A transient response that reaches the steady-
state value in a minimm of time with no overshoot.

Switching criterion: The system conditions at which contactor reversal
must take place to yleld optlmm transient responses.

Tocus of first switching points: The locus of system coordinates required
to define the first contactor reversal points in an optimm contactor
control system.

Locus of second switching points: The locus of system coordinates
required to define -‘the second contactor reversal points in an optimum
third-order contactor control system.

Zero trajectories: The phase-space trajectories passing through the
origin,

SYSTEM DESCRTPTION

Second-Order System

A block disgram of the first system considered in this investiga~
tion is given in figure 1(a). This system is descriptive of a missile
contactor roll control system. A step input ¢i to the system causes
an error € +to0 be applied to the contactor element. The sign of this
error signal actuates the contactor which then applies a step aileron
deflection & +to the control surface. A reversal of the sign of the
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error signal when the error reaches zero causes a corresponding reversal
of the conta.ctor output. In order to facilitate the analysis, 5 is
limited to +1°. The magnitude of the aileron deflection is included in
the airframe velocity constant. The performesnce of this system 1s char-
ecterized by a large initial overshoot and a decaying oscillation.

The contactor system of figure 1(a) was then modified by the inclu-
sion of a computer element controlling the contactor input to cause an
optimum system respnse. Figure 1(b) is a block diagram of the modified
system. In response to a step input ¢1 5 this element actuates the con-
tactor which appllies a step aileron .deflection & +to the alrframe.
Unlike the system of figure 1(a), the sign of & is reversed before the
error reaches zero. In the optimum case, the sign reversal takes place
at the appropriate time to cause the error and the first time derivative
of the error to reach zero simultaneously. The return of the control-
surface servo to a neutral position removes the control-surface deflec-
tion, and the system remains at rest. The neutral relay position required
to keep the system at rest is not shown In the block diagrams; therefore,
figures 1(b) and 2 apply to the systems only when they are not at this
rest or steady-state position.

Third-Order System

A block dlagram of the optimm third-order contactor control system
consldered for this study is given in figure 2. The performance of this
system is similar to that of the optimm second-order system previously
described with the exception that, because of the order of the system,
the computer element must actuste the contactor in such & manner that
the error and its first two time derivatives go to zero simultaneously.
In order to accomplish this, a minimm of two switchings 1s required.

In response to a step input of acceleration, the contactor element of
the optimm third-order system applies a constant rate of pitch control-
surface deflection to the. alrframe. In a manner similar to the second-
order system, the contactor output is restricted to ¥l by including the
actual magnitude of this output in the constant K;. The resulting rate

of control-surfece deflection B ceauses the error to decrease at an
increasing rate. Then, the contactor output is reversed. The error
continues to decrease Hut with a decreasing rate. Once more reversal
of the contactor output causes the error, the error rate, and error
acceleration to go to zero similtaneously. Figure 3 illustrates a typi-
cal response of this system to a step input of the controlled variable.
This figure contains time histories of e, &, €, A., and njy.

\
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Figure b is a block diagram of a limited-linear third-order normal-
acceleration control system. The forward loop gain Ky, and the feedback

gain X3 of this system were adjusted to minimize ﬁ Ie(t)ld‘b for a
0

5g step input.

METHOD OF ANATYSIS

The analysis is concerned with the determination of the switching
criterion necessary for the optimum performence of a contactor control
system. The mathematical analysis is based primerily on that developed
by Bogner in reference T. The transfer-function coefficients used for
the systems discussed are presented in teble T.

Second-Order System

The equatlion for the simple contactor roll control system shown in
figure 1(a) can be written as

Tﬁ+iﬁ=1qpa (1)

at2 dt

Tnasmuch as e = @ - @, if only step inputs of position are considered,
equation (1) can be written:

2
T -‘1—5 + %-e- = -K),8 (2)
at= 9%
Substituting & = € -g—:- and performing the integration yields
Le+2-Ky5 loge(2 + Ky3) = By (3)

where By 1s the constant of integration. Equation (3) yields the phase

portreit for the system from which eny of the possible system trajectories
may be obtained. For the system of figure 1(a.), the sign of © reverses



NACA TV 3743 7

a8 € changes sign. A typical phase-plane plot of the response of the
system to a step input of position obtained from an analog computer is
shown in figure 5, and a transient response for this system is presented
in figure 6.

Evaluation of the constant of integration Bp in equation (3) for
the phase-plane trajectories through the origin gives

=

e+é-K1|_810ge(Kf§+l)=0 (%)

Because of the dusl value of & (that is, & = ¥1°), equation (k)
is actually two equations:

1 €

=e+ & -X lo @.+—)=0 (52)
T ) 10gg %,

1 . &

Ze+€+K,1log (1L -—=—}=0 (5vb)
T hy ge( Kll-)

Inasmich as there exists only one solution of the equatlion g—z = f(E—:,e)

through each point in the phase plane, equations (5a) and (5b) represent
the only paths along which the representative point of the system may
enter or leave the origin. These are called the zero trajectories.

Figure T shows zero trajectories obtained from equations (5a) and
(5b) on an analog computer and by direct numerical substitution. Por-
tions of these zero trajectories will later be used for the optimm sys-
tem of figure 1(b), If equation (2) is set up on an analog computer, a
phase~plane plot of & against e obtained as the representative point
moves from the origin with 8 = +1° will give curve oa of figure 7. Simi-
lerly, a solution of the same equation with 3 = =1° yields curve ob.
The :;bsti‘hJ.tion of -t for t in equation (2) results in the Tfollowing
equation:

2
e (6)
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A phase-plane plot of & against € obtained for equation (6) in a
similar manner from en analog computer with 5= +1° and 5 = -1° yields
the curves oc and od, respectively, of figure 7. (See ref. 8.)

The segments of the zero trajectory od and oc entering the origin
can be utilized as the contactor switching curve. If the sign of & is
reversed at the instant a system trajectory first intersects a segment
of the zero trajectory entering the origin (at a point such as (a) in
fig. 5), the system trajectory will then follow the zero trajectory to
the origin and execute a deadbeat response. This switching criterion
wlll yield an optimum transient response.

The block diegram of the second-order system, modified by the eddi-
tion of a computer element to reverse the sign of & when the represent-
ative polnt first intersects the switching curve, is presented in fig-
ure 1(b). This computer element senses the region of figure T in which
the representative point of the system trajectory lies, and produces the
proper contactor output. Whenever the representative point crosses the
segment of the zero trejectory leading to the origin, the contactor out-
put reverses. Finally, at the instant this point enters the origin, the
contactor output goes to zero. Figure T also illustrates typlical phase-
plane responses of this system to step inputs of position, and figure 8,
a number of translent responses obtained on an analog computer.

Third-Order System

In the second-order contactor system, the switching criterion causes
cand € +to go to zero simulteneously. For an optimum third-order sys-
tem, it can be shown that e, €, and € must go to zero simultaneously.
It is shown in reference T that two switchings are required to do this.

In a third-order system the second or final switching curve in phase space
leads to the origin and, hence, is still called the zero trajectory. In
general, the locus of first switching points in a third-order system con-
sists of a surface containing the zero trajectory. If, however, the
inputs to the system are restricted to steps of the controlled variable,
the locus of first switching points becomes & line lylng in this surface.

In the following analysis the equation for the third-order system
is presented. With the inpu}s restricted to steps of the controlled
variable, a pair of simultaneous equetions for the locus of first switching
points is obtained. The zero trajectory is also developed from the equa-
tion for the system. An analog-computer method for obtaining this
switching criterion is introduced and used to check the anslytically
derived criterion. Transient responses are then obtained from the con-
tactor system using this switching criterion.
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Anplytical method.- A block diagram of the third-order contactor
acceleration control system studied is given in figure 2. The differen-

tiel equation of the basic system iIn terms of the error variable can be
written as follows:

€(t) + bE(t) + c&(t) = KjKge A, (72)

In the appendix, where a complete derivetion of the swiitching criterion
is presented, equation (7a) is nondimensionalized and written as

E™(r) + B"(T) + CE'(7) = A (7p)

Equation (7b) is in general form inasmuch as time and amplitude scales
may be adjusted for any desired undemped netural frequency and system
velocity constent. The results obtained can be applied to any similar
system with the same damping ratio (0.1k).

In the following analysis, after two transformations of va.ria.bleé »
the switching criterion is determined in terms of wy, wp, and W3

These transformations were used to faclilitate the analysis. The varia-
bles wy, Wo, and W3 are defined by the following three equations:

-

wy(7) = B(7) + -X:TB- E'(7) + 3\;'—7\3— E"(T)
= - =L _ E - L _g"

wa(T) = o E'(T) e E"(7) L (g)
= - 7‘32 + 7‘22 1 - 1 1

W3(T) = - 7\27\3(7\3 - 7\2) E'(r) - 7\27\3(7\3 - 7\2) B (7) J

where the characteristic roots of the system are represented by A.

In determining the loci of switching points, the veriables wp,

are introduced. The locus of first switching points will be written
in terms of wyj, Woy, and Wz and the zero trajectory, or locus of
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second switching points, in terms of w5, Woo, and W32 with both
loci lying in the wy, wo, and W3 phase space. It is shown in the

appendix that the locus of first-switching points can be represerfted. by
the following two equations:

(9)

]%5/*2

2z - -
1425 (25A1 %e) Qr'al - Jw31) = l: - 7\22(211 7‘2)@'21 + Jw31)

A2 Az - A AN 2 .
1|1 -2 (23A1 2) exp(fu -—25{2) w21+;]w31+7\22():l- 7‘2)]=

2 2
(% - %) Mohs . .24
LEW Ty R Ty [ T M2 (% - 2)

(10)

Figure 9 contains a plot in the waWo plane of values of wo; and
wz; vhich setisfy equation (9). Inmsmuch as equations (9) and (10) are
simultaneous equations, the values of wpy and Wz which satisfy equa-

tion (9) were substituted point by point into equation (10), and the
resulting equation solved for wy;. The values of wqq thus obtained
are shown plotted against woy and w31 in figures 10 and 11. This
numerical evaluation was done with a digital computer. Figure 12 is a
sketch of the locus of first swiitching points in the upper half of the
w phase space.

It 1s further shown in the appendix that the locus of second
switching points or zero trajectory can be expressed by the following
pair of simultaneous equations:

2
(o2 + 22) - 5 )‘2%223 ) Wip = N5 e"P(?‘QA: w12> i

2
P exzp(%z\li m) (11)
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22523 = N 2N 2
) PEEE D o ) o el )

(12)

The Wiz projection of the locus of second switching points is plotted

in figure 13. Because the inputs are restricted to steps of the con-
trolled variable, only the initial portion of this trajectory on either
side of the origin is used.

Anslog-computer method.- The two loci of switching points can be
obtained by an analog-computer method. The determination of the switching
criterion by this method involves the use of the original equation for
the system (eq. (7b)) on an analog computer. Inasmuch as this equation
is used, the criterion can be obtained in terms of the original system
variables. However, for the presentation given here, the tramsformations
of equations (8) were incorporated with equation (7b) in the analog-
computer setup. This permitted the use of the analog-computer method
to check the analytical results.

Transformed system coordinates: The actual determination of the
switching criterion by an analog-computer method is accomplished in
three steps. First, the zero trajectory or locus of second switching
points is obtained. Second, the wzwo projection of the locus of the

first switching points is determined. Finally, after the complete space
trajectory of the locus of second switching points and the WzWp pro-

Jection of the locus of Pfirst switching points are determined, the
remeining wy coordinates of the locus of first switching points are
obtained. In detail, this procedure is as follows:

(1) A solution is obtained in negative time from the origin of the
w phase space with +A. The resulting space curve is the path along
which all trajectories entering the origin must travel. As in the second-
order system, this space curve is called the zero trajectory.

(2) For step inputs (wl,0,0) to the system in positive time, all
initial trajectories have the same WzWo projection. Any subsequent

switching from such initlal trajectories must also have this projection.
Hence, the WzWo projection of the locus of first switching points is

determined by operating the system in positive time with +A from the
origin or any point on the wj axis and recording the WzWpo projection

of the resulting trajectory.
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(3) The zero trajectory and the wswp projection of the locus of

first switching points have been determined. The wy velues of the

locus of second switching points remain to be found. Figure 14 shows
the wswp projection of these two loci. If the system leaves the ori- o

gin (point o of fig. 14) in negative time along the zero trajectory and
A 1is switched at some point b between the origin and point a of curve oa,
the value of wy recorded at the intersection of the resulting trajectory

and the w3w2 projection of the locus of first switching points (points ¢ ’

d, e, and £ of fig. 14) is the remaining coordinate of this space curve.
If the sign of A is again reversed at this intersection, the trajectory
will follow the locus of first switching points to the origin. By varying
the point on the zero trajectory where the system is first switched in
negative time, the space curve of the locus of first switching points can
be defined.

Values of the zero trajectory obtained by the method discussed are
plotted in figure 13 along with solutions of the analytical expression.
Projections of the locus of first switching points obtained with this
method are shown with digital-computer solutions of the analytical
expressions in figures 9, 10, and 11. It was found, during the analog-
computer determination of the locus of first switching points, that the
wy values associated with this space curve must be determined with care.
Because of the switchings involved, it is possible to introduce consider-
able error at this point.

The phase-space operation of the system in response to a step input
of the controlled variable is shown in figures 15 and 16. The phase-
space trajectory begins with the initial velue of error at point a. It
travels along curve ab of these two figures-until it intersects the locus
of first switching points at b. At this point, the sign of A, is

reversed. This reversal changes the direction of the trajectory, which
now travels along curve be until the zero trajectory is reached at
point c. Here the sign of A. is again reversed and the system travels

along the zero trajectory to the origin at point d.

Original-system coordinates: The analog method can be summarized
in terms of its use to determine the switching criterion in terms of an
original system error variable. The equation for the system is set up
on the computer end a solution for e(r) 1s obtained in negative time.

The trajectory e(-t) = fE::(--r), e(-1), A] obtained in this manner is

the system locus of second switching points or zero trajectory. The

equation of the system is then set up in positive time and the projec-
tion of the trajectory in the &(t)&(t) plane is recorded. This pro-
jection coincides with that of the locus of the first switching points
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in this plene. The remaining coordinate e(t) is obtained by plotting
the system trajectory on the €(t)é(t) plane as the system leaves the
origin in negative time and then reversing the sign of A wuntil the
trajectory intercepts the previously mentioned projection plotted in pos-
itive time. The value of e(t) at this intercept is the remaining
required coordinate of the locus of first switching points. The proce-
dure is repeasted until sufficient points on this locus are established.

DISCUSSION OF THIRD-ORDER TRANSIENT RESPONSES

Transient responses obtained from the optimum contactor normal-
acceleration control system for several step-input amplitudes are shown
in figure 17. These responses are evalusted by comparison with those of"
an equivalent limited-linear system. The linear system utilized for this
purpose is shown in the block diagram of figure 2. The meximm rate of
control-surface deflection of the linear system was limited to that of the
relsy system. In addition, the forward loop gain Ko and the feedback

%
gain K5 of the linear system were adjusted to minimize f |e(2)] at
0

for a step input of 5g. A series of transient responses obtained from
this system for several step-input amplitudes are shown in figure 18.

A comperison of figures 17 and 18 shows that in the optimum system over-
shoot is eliminated. In addition, this comparison also shows that there
1s a considerable superiority in rise time of the optimm system for

input amplitudes below thogse at which the llinear-system gains are adjusted.
For larger input amplitudes, this superiority is less because the limited-
linear system operates at its velocity saturation limit for a large per-
centage of the transient time. For the optimm case, the control surface,
in response to a positive unit step input ny, initially travels at a pos-

itive constant-rate and then at the appropriate time travels at a negative
rate. At the second switching point, the control surface travels at the
positive constant rate again until the output n arrives at the steady-
state value. This control-surface response is typlical of the optimum
contactor control system and 1s proportional to the integral of Ar(t)

of figure 3.

CONCLUDING REMARKS

This paper presents a switching criterion that ylelds an optlmum
transient response to step inputs of the controlled veriable for a third-
order contactor system with complex roots. This optimum respomse has no
overshoot and arrives at a steady-state value in a minimm of time in
response to a step input of the controlled varieble.
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Two methods of obtaining this switching criterion, a direct mathe-
metical method and the analog-computer method, are presented. In the
direct mathematical method, two transformations of variables were applied
to the original nondimensionalized equation of the system to determine
the equations of the two loci of switching points in the phase space.
The equations of these loci are in general form inasmuch as the time
scale of the transient outputs as well as the amplitude scale may be
adjusted for eny desired undamped natural frequency and system veloclty
constant for the given value of damping ratio. A diglital computer wes
utilized to obtain the actusl coordinates of the switching locl after
the equations of these locil were established.

The analog-computer method, although lecking the accuracy of the
mathematical method, offers a relatively simple means of obtaining the
two loci of switching points. In addition, these locl can be determined
in terms of the original system error variable with no transformations.

The transient responses of the optimum system were compered with
those of the equivalent limited-linear system. The optimum contactor
acceleration control system is superior with respect to the time required
to reach steady-state values; however, for lerge step inputs of the con-
trolled variable, this time advantage is less because the limited-linear
system operates at the velocity saturation limit for a large percentage
of the transient time.

Langley Aeronsutical Laboratory,
National Advisory Committee for Aeronautics,
Lengley Field, Va., May 10, 1956.
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APPENDIX

DERIVATION OF THIRD-ORDER SWITCHING CRITERION

0 1 0
A mtrix [0 0 1
0 -C -1
[0
d] matrix (0
A
P transformation matrix
p1 inverse matrix P
uy, coordinates in space
]
q] matrix {u,
—.-u3‘
n principal coordinates
|
V1
v] metrix |vo
3]

B =-JVL - ke

Symbols

of system (n = 1, 2, and 3)

15
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Third-Order Switching Criterion
The basic form of the equation for the third-order system of fig-

ure 2 is

R 5 (a1)
&r S(S2 + bS + ¢)

When ¢ = n; - n and inputs are restricted to steps of ny 80
that @3 = Hy = Bj = 0, equation (Al) can be written as follows:

€(t) + pE(t) + cé(t) = -KyKse A, (a2)
This equation can be simplified with the following substitutions:

A= -,

T= "Dt

e(t)

This simplification results in

E"(7) + E"(1) + CE'(1) = A (A3)
Iet
ul = E(T)
u2 = E'(T) (A,'l')

us = E"(7)
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From equations (A3) and (Ak) the following equations can be written:
dul )
ar

Fremal ot (a5)

du5 -
E‘}—=—C'U2-113+A‘

In matrix notation, equations (A5) become
w| [o 1 o] Tw] [0

Llupl =10 o 1| [fu| + |0 (46)

I I B

or

Sul=4y]+d] (a7)

The roots of the characteristic equation are

M =0

}‘2=-—1+2h-hc
-1 - ﬁ-hc

7\3= >

M =0 W
-1+ JB
LI (a8)
-1 - JB
M =
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Introducing e new coordinate space v] with the transformation
matrix P so that

u] = P v} (A9)

permits writing the system equation (A7) in terms of the new coordinates
as follows:

& v] = plap v] + 21 g (a10)

When the principal-coordinate transformation is applied, the
matrix P is determined so that the resulting P-1AP metrix is of the
diagonal form. This selection results in (see ref. T)

1 1 1
P=10 N N (A11)
LE) 7\22 7\32

From equation (A1l), where - (7\2 + 7\3) =1,

- . -1

1 X o
Asho Ash2
1_ A3 -1
T Rs o) Tfs - ) a2
o ) _ 1
BEEICEES RRCICREN]

After substitution of the velues of equations (All) and (A12) for
the transformation matrix and its inverse, the matrix P~1AP can be

evaluated as
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00 o
Plap=|0 N O (a13)
00 A3

The substitution of equstions (Al2) and (A13) into equation (A10) gives

-

| [o o o] |1 55?5 3§;5 0]
a1 A3 -1

vs| |00 M| [0 e 1 A

e B CRED RS CREY) ol

which is equivalent to

== e (a1k)
2 . Aova - = (415)
ar R(ds - %)

d

=3 o gy + 4 (a16)

Elimineting dt between equations (A1l%) and (Al5) and between equa-
tions (Allt) and (A16) and integrating results in the following equations:

A
2
AN

'V'l =

1 -—2B  _|+B (a17)
owere - oty o2
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v = —8. 19 \ A (A18)
1 )\27\32 %[7‘33"'-7\?(?‘—@]-?32

Equations (A17) end (A18) can be solved to yield a zero trajectory
in terms of w,, Vo, and V3 and a locus of first switching points in
terms of these same veriables. These variables are, however, complex.
In order to reduce these equations to real varisbles, it is first noted
that equation (A9) when solved for v] yields

v] =p-1 u_.] (A19)

The substitution of equation (A12) into equation (A19) lemds to the
following set of equations:

1 1
= 4+ ——— + ——
i=m A5 A3 3

Vo = 5 up - L uz  p (A20)
(s -R) (s - k)
N, - SN S
V5 7\3(}\3 = Ra) up + KB(M = Ra) u3

The substitution of equations (A8) into equations (A20) gives

LN

L N
Vq =y + + w
1-" 32+1u2 g2+ 1 3
v = - up + (1 - g2) ua 2 u3+3__g__u3’ (az1)
B2 + 1 B(p2 + 1) B2 + 1 p(p2 + 1)

2
BT E L2 @y BT @I e 2
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Inasmuch as vp and vy are complex conjugates and v; is a real
variable, the following change of veriables willl yield equations in terms

of real variables:

vp=vi |

W = Vo + V‘3
4 (A22)
V2 - V:
Rl
Substituting equations (422) 1nto equations (A21) ylelds
1
Wl =uy + + 4 'IJ.3
B2 + 1 B2 + 1
w2 = - h up -~ h' 113 3 . (A2 )
B2 + 1 B2 + 1 2
_2@ -p2) A
U +
B(B2 + 1) B(g2 + 1) E
or, in terms of A,
R S St 1
A2z 7\27\5
1 1
W = = e - ——
27 "5 2 hen O : (azk)
WB = =} A5 + )\2 1
(s - %) - 22505 - )




22 . NACA TN 3743

Substituting equations (A22) into equations (A17) and (A18) yields

- I

__A L] - A

A 1o DB A
W = ——p 1ogg Wo - JWz) + ———=——rt |+ Bp (a26)
These two equations can be rewritten as follows:
s -R) 5 ( M xi)
= - = A2
( Maﬂ) e P\ A /T (hz7)
expiwy A
2A
wo - Jwg +
2z - 2
)‘5 (3 ?‘2)=._x2_.exp(-32_7.\?_7§_>= B), (a28)
Aohs? 5 A
eXp\W1 =

A typical response of the system considered to a step imput of the
controlled verieble will begin at E(t) = Ej, BE'(r) = 0, and E"(1) = O
apnd terminate at E(t) = 0, E'(T) = 0, and E"(7) = O in the E(T)
phase plane. The initial point of this response will be called O, the
first switching point 1, the second switching point 2, and the terminal
point or origin 3. By using the transformations of equations (A24) and
the notation that wp &t a polnt a along a trajectory becomes Wy,
this response can be shown to begin at wy = By =Wy, Wp =0, w3z =0,
and terminate at wy = 0, wp = 0, and Wz = 0 in the W phase space.

This response is shown schematically in the following diegram:
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Point 1, on locus of first switching points
Point 2, on zero trajectory

2= -8
Second trajectory

'W2 = w22 QQ‘
W3 = W3p

o 0O

3 8

Pictorial diagram of typical w, phase-space trajectory

The first trajectory of this diagram is described by equations (A27)
and (A28) with A, substituted for A. The constants Bz and B) have

the seme respective values at any point on this trajectory. If B3 is
evaluated from equation (A27) at point O and equated to B; eveluated at
point 1 on this trajectory, the following equation can be written:

2 2
Vo1 + Jwzy 7\22(_,\3 _ )\2) _}\22()\5 _ )\2)
2 2)
) e

The application of this procedure to the three trajectories for both
B5 and By results in the following six equations in terms of the ini-

tia) and terminal points and the two switching points:
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24, 20y
'W’21 + J‘W‘Bl - -
M2 - %) W2 - ) (125)
A %A
o 2) ol )
2y 2
Vo1 - Jwzy +
e o M CE AN
2 A 2
R
from second trajectory,
2Ly
Woy + Jwzy + Woo + JWzo +
TR Pt E "
exo oy 2222) - (.,,12 Mz“s)
A A
2y 2
Wol - Jw3y Wop = JWsp -
2205 - %) M05-%)
.AQ 2 A 2
wofwE)  eofu )
and from zero trajectory,
- 20
TR Tl ) e '
N
expela M ) 3
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2N
. y S b .
3 (23 Pe) 2 ()
o3 M (7\3 - 7\2)
exp\wWyo )

The elimination of Wy, Wop, and Wzp from equations (A29) to
(A3L4) yields the following two simultaneous equations in terms of wyj,
Wo1, 8nd Wz

(a35)

A3 Ao
y ST oV : Moz - N
1+ 5£3 7\2)(1»ra-|_-,jw3l>.= [ - 2(5 2)(10'23 +Jw3li|

and

2(Ax - 2
1 tdl L 05 - %) QXPG']J. EZT)\E)[}Z.& Jwzy + 2 - ]

2y L s - %)|

Ms2(As - 22) ( 7\27\32> oy
+ - -
1 \ll + 7 exp (w17 Ay Wo) -~ Jwzg )\52 (}\3 - )\2)

Inesmich as wyq, Wol, and W3] represent the first switching point,
these two equations express the locus of first switching points.

Equations (A33) and (A34) can be menipulated to yield the wiwo
and the WgWz projections of the zero trajectory as follows :

2
(2 + 25%) - 3 e s A(? - 2e) W5 = A5° m(xsz "12> ¥

2o/’

(436)

2
7\22 EJCP():Z% wlg) (A37)
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TABLE I.- TRANSFER-FUNCTION COEFFICTIENTS

b, radians/sec . . . .
¢, (radians/sec)2
Ki, deg/sec/volt —. .
Kp, volts/g unit . . .
K5, volts/g unit/sed?

Ky,
K5,

deg/sec/deg
g units/deg

T’ Sec . [ . [ L] . [ ] L]

‘el
Al

NACA TN 3743

e e oo 6.65
. o e e 518
e o o o 140
e o o o 0.317
[ ] L] L] L] 0.""7
« « « « 1,000

e o o a 903
e o o @ 0.1
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(a) Contactor roll control system.

=t— Control~surface sServo —o= «— Alprframe —»

€ Computer e Ky ¢

> Ef__ " element _1_4 S(TS+1)

(b) Optimum contactor roll conmtrol system.

Figure l.- Block dlagrams of the contactor and the optimum contactor
second-order roll control systems.
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Figure 2.- Block diagram of the optimum third-order contactor normal-
acceleration control system. )
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Am volts ny, g units

6’5 units
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€
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1
Pime, t, sec
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31

Figure 3.~ Typical response of the third-order contactor acceleration

control system to a step command signal.
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Figure kL.~ Block diasgram of the limited-linear normal-scceleration comtrol
system.
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Brror signal, ¢, deg

Flgure 5.- A pha.se;pla.ne plot of the contactor roll control system in
response to e 5° step input. The zero trajectory for this system is
superimposed on the plane.
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Roll angle, @, deg
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Figure 6.- Transient response of the combtactor roll control system to a
59 gtep input.
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Figure T.- Plot of the zero trejectories of the contactor roll control
system on the phase plane.
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Figure 8.- Transient responses of the optimm contactor roll control system
for step roll-angle inputs.
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Figure 9.~ Initiel switching curve in the WzWp plane of the optimum

contactor normal-acceleration control system.
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Figure 10.- Initial switching curve in the wywp, plane for the optimum
contactor normal-acceleration control system.
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Figure 1l.~ Initial switching curve in the ﬁle plane for the optimum

contactor normal-scceleration control system.
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f\Locus_ of first
: switching points
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. /| wp projection of locus

of first switching points

Yo

Figure 12.- Iocus of Pirst switching points in the upper half of the
w phase space of the contactor noymel-acceleration control system.
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Figure 13.- Zero trajectory for the optimum contactor normal~-acceleration
control system. If;
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«06 : ‘ Zero trajectory
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Figure 1%.- A phase-plane plot illustrating the method of determining
points on the first switching locus with an analog computer for the
optimm contactor normel-acceleration conmtrol system.
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Flgure 15.- A typical trajectory in the w3wl plane for the optimum
contactor normal-acceleration control system.
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Figure 16.-~ A typical trajectory in the w.w
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Figure 17.- Normsl-acceleration trensient responses of the optimum con-
tactor normal-acceleration control system to step inputs of nj.
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Figure 18.- Normal-accelerastion transient responses of the limited-linear
control system. 1:Elfhe geins K, and K5 were adjusted to yleld a mini-
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